

Journal of Organometallic Chemistry 657 (2002) 217-223

www.elsevier.com/locate/jorganchem

Retention of the B(3)–X (X = Br, I) bond in *closo-o*-carborane derivatives after nucleophilic attack. The first synthesis of [3-X-7-R-7,8-*nido*-C₂B₉H₁₀]⁻ (X = Br, I). Crystal structure of [HNMe₃][3-I-7,8-*nido*-C₂B₉H₁₁]

G. Barberà^a, C. Viñas^a, F. Teixidor^{a,*}, A.J. Welch^b, G.M. Rosair^b

^a Institut de Ciència de Materials de Barcelona (CSIC), Campus U.A.B., E-08193 Bellaterra, Spain ^b Department of Chemistry, Heriot-Watt University, Edinburgh EH14 4AS, UK

Received 30 August 2001; accepted 30 January 2002

Abstract

The synthesis of new 3-halogeno *nido* derivatives of *o*-carborane, $[3-X-7-R-7,8-nido-C_2B_9H_{10}]^-$ (X = Br, I; R = H, CH₃, C₆H₅) is described, through deboronation of the compounds 3-X-1-R-1,2-*closo*-C₂B₁₀H₁₀, previously synthesised in our laboratory. These *nido* products have been fully characterised using ¹H-, ¹¹B- and ¹³C-NMR spectroscopies, MALDI-TOF and, for $[3-I-7,8-nido-C_2B_9H_{11}]^-$ by an X-ray crystallographic study. The influences of the halogen moiety on both the B(3) resonance and that of the bridge proton are discussed. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: nido Carborane derivatives; Deboronation; Iodinated ligands

1. Introduction

Recently, the chemistry of boron-halogenated carboranes has received considerable attention, as evidenced by many relevant publications [1]. Previously, we have reported the synthesis of a series of 3-iodo and 3-bromo closo-o-carboranes and demonstrated that they could be excellent starting compounds for the preparation of new carborane-derivatives following substitution reactions [2]. More recently, the reactivity of 3-I-o-carborane towards Mg, Cu, Cu in the presence of PPh₃, [Ni(PPh₃)₃], or [Pd(PPh₃)₄] has also been studied in our group to establish the suitability of B-iodine substituted carboranes as sources of new derivatives [3]. In spite of the fact that halogenated *nido* carboranes have potential relevance to important topics such as radioiodine carry and as boron neutron capture therapy (BNCT) reagents [4]; relatively few iodinated and brominated nido carboranes are known. The iodination $[7,8-nido-C_2B_9H_{12}]^$ was first reported by of

Hawthorne et al. in 1965, [5] an electrophilic substitution at the 9-position of the open face of the *nido* precursor. The synthesis of 9,11 disubstituted [7,8-*nido*- $C_2B_9H_{12}$]⁻ was later described either by electrophilic halogenation with iodine [6,7] and bromine [7] or through the reaction of the anion with *N*-halosuccinimide (iodo and bromo) [8]. The synthesis of the 5-iododerivative, has also been described, [9,7] and, recently, some *nido* carborane species have been radioiodinated for labelling studies [10].

In this work, we describe the synthesis of new 3-halogeno *nido* derivatives of *o*-carborane, [3-X-7-R-7,8-*nido*-C₂B₉H₁₀]⁻ (X = Br, I; R = H, CH₃, C₆H₅), through the deboronation of the appropriate 3-X-1-R-1,2-*closo*-C₂B₁₀H₁₀, compounds previously synthesised in our laboratory [2].

2. Results and discussion

Since the best method of obtaining halocarboranes is by electrophilic halogenation with iodine or bromine of the boron atom vertices, the most common halogenated

^{*} Corresponding author. Tel.: +34-93-580-1853; fax: +34-93-580-5729.

nido carboranes are those substituted at the 9 and 11 positions, the sites of highest electron density as a result of their position in the open pentagonal face of the *nido* cluster [5]. Consequently, producing iodo and bromo derivatives substituted in other positions of the nido cluster is relatively difficult, due to the unsusceptibility of these sites to electrophilic attack. As far as we are aware, bromination of a *nido* carborane is only known at the 9 and 11 positions. For iodocarboranes the nido anion enantiomers 5-I-nido-7.8-dicarbaundecaborate and 6-I-nido-7,8-dicarbaundecaborate have been additionally been obtained, through the deboronation of 9-Io-carborane with KOH [7] or tetrabutylammonium fluoride hydrate, TBAFH [9]. In this paper we describe the deboronation with EtO⁻ in EtOH of a series of closo derivatives of o-carborane 3-X-1-R-closo-1,2- $C_2B_{10}H_{10}$ (X = Br, I; R = H, CH₃, C₆H₅) iodinated or brominated at the 3-position, i.e. that connected both cluster carbon atoms. As it is well established, the deboronation of an icosahedral closo-o-carborane cluster always takes place at the 3 or 6 positions, equivalent in the case of non-B-substitution. However, the equivalence is removed in our case, because B(3) is halogenated. Therefore, one of the aims of this work was to establish which deboronation path, either the elimination of the B(3)-X vertex (X = I, Br) or the removal of the B(6)-H vertex (Scheme 1), would be followed.

Hawthorne et al. established that the partial degradation of 3-R-*closo*-compounds (R = Et, Ph) [11] by nucleophilic attack with ethanolic hydroxide ion at reflux temperature took place at the non-substituted boron atom, due to the steric demand of the R group, thus affording partially degraded products in which the organic substituent remains attached to boron(3). Hawthorne later reported [12] that B–OR carborane derivatives can also undergo degradation under basic conditions with retention of the substituent, but that, for substituted carboranes such as 3-(CH₂(CH₂)₂OH)-1,2*closo*-C₂B₁₀H₁₁, the B(3) vertex was removed. In general it has been shown that the deboronation of 3-substituted

Scheme 1. Possible paths of the degradation process in B-derivatives.

ortho-carboranes, 3-R-1,2-*closo* -C₂B₁₀H₁₁ in alcoholic KOH solution gives either $[3\text{-R}-7,8\text{-nido}-C_2B_9H_{11}]^-$ (R = Ph, Et, NC, NHR) or $[7,8\text{-closo}-C_2B_9H_{12}]^-$ (R = OH) or both possible *nido* anions when R = NH₂ [13]. Therefore, it is apparent that the outcome of nucleophilic attack is not just affected by steric considerations, and that electronic effects should also be taken into account. Fox et al. [9] calculated the Mulliken charges for some halogenated *closo* carboranes and demonstrated that the boron atom removed remains the one bearing the highest positive charge, thus the preferred site for nucleophilic attack.

In our case, B(3) is either substituted with iodine or bromine. Both are electron-withdrawing atoms that can deplete electron density on B(3) making this atom more susceptible to nucleophilic attack; in contrast, they are also bulky atoms, which could prevent B(3) removal by steric effects, forcing attack at B(6) instead.

The closo halogenated compounds 3-X-1-R-1,2-closo- $C_2B_{10}H_{10}$ (X = Br, I; R = H, Me, Ph) have been used as starting materials. The deboronation of these compounds with KOH-EtOH under reflux conditions for 3 h and subsequent precipitation with [HNMe₃]Cl led to the formation of $[HNMe_3][3-X-1-R-7,8-nido-C_2B_9H_{10}]$ (X = Br, I; R = H, Me, Ph; compounds I-VI) in good to high yield (Scheme 1b). Therefore, it is clear that nucleophilic attack takes place at the non-substituted atom B(6) leaving B(3)-X intact. This can be interpreted either in terms of the bulkiness of the substituent or the π back-donation power (the mesometric (+M) effect) of the halogen atoms. Given that the lone pairs of weakly electronegative elements like iodine are reasonably basic in terms of Lewis acid-base theory, they could interact fairly efficiently with the tangential p-orbitals on B(3)transferring electron density to this atom, [2] thus causing B(6) to become the atom most susceptible to nucleophilic attack.

Compounds I–VI represent the first examples of 3halogeno *nido* derivatives of *o*-carborane, and they can be used as precursors to synthesise carborane-containing macromolecules. I–VI have been fully characterised using ¹H-, ¹¹B-, ¹³C-NMR spectroscopy, and, in the case of [3-I-7,8-*nido*-C₂B₉H₁₁]⁻, MALDI-TOF and Xray diffraction. The MALDI-TOF spectrum (Fig. 1) shows a peak with isotopic distribution at m/z = 260.39corresponding to [IC₂B₉H₁₁]⁻. A peak at 127.05 corresponding to lost iodine is also observed.

2.1. The B(3)-X influence on the bridging proton

The bridging proton in $[7,8-nido-C_2B_9H_{12}]^-$ derivatives is relatively acidic and can be removed by the addition of strong base. Comparing the chemical shift of this bridging proton in unsubstituted $[7,8-nido-C_2B_9H_{12}]^-$, -2.90 ppm, with that in $[3-X-7,8-nido-C_2B_9H_{11}]^-$ (X = I, $\delta = -2.67$ ppm; X = Br, $\delta = -2.68$

ppm) we observe that, although the variation is small, the presence of an halogen group on B(3) moves δ to lower field. The effect is similar for both iodine and bromine. The same phenomenon is apparent for [3-X-7-Me-7,8-*nido*-C₂B₉H₁₀]⁻ (X = I, Br) in which the BHB resonance is found at the same position in both species, in both cases at lower field than in to [7-Me-7,8-*nido*-C₂B₉H₁₁]⁻. Moreover, this pattern also extends to the C_{cluster}-Ph derivatives (see Table 1). It is also noteworthy that, when a halogen group is substituted on B(3), in most cases the bridge proton appears in the ¹H{¹¹B}-NMR spectrum as a multiplet instead of the broad singlet usually observed in *nido* carboranes.

2.2. The B(3)-X substitution influence on the ¹¹B-NMR spectrum

The presence of an iodine substituent on B(3) in [3-I-7,8-*nido*-C₂B₉H₁₁]⁻ ($\delta_{B(3)} = -28.8$), causes the resonance to appear at higher field in comparison to the unsubstituted anion [7,8-*nido*-C₂B₉H₁₂]⁻ ($\delta_{B(3)} = -$ 17.4). In contrast, a bromine substituted on B(3) shifts the resonance to lower field; [3-Br-7,8-*nido*-C₂B₉H₁₁]⁻ ($\delta_{B(3)} = -$ 14.2). The same effect was earlier observed in the case of halogeno *closo*-carborane derivatives [2]. We also note that the influence of a carbon substituent, either methyl or phenyl, on the chemical shift of B(3) in 3-I or 3-Br-*nido*-carborane is comparable in both cases, causing a shift to low field of ca. 5 ppm in the iodo case and ca. 3 ppm in the bromo case ($\delta_{B3-I,C-Me} = -23.6$; $\delta_{B3-Br,C-Me} = -11.1$, $\delta_{B3-Br,C-Ph} = -10.9$) (see Table 2).

Table 1

Chemical shifts of bridge BHB protons in halogenated *nido*-carboranes

	C _{cluster} -H (ppm)	C _{cluster} -Me (ppm)	C _{cluster} -Ph (ppm)
B(3)-H	-2.90	-2.71	-2.46
B(3)-I	-2.67	-2.54	-2.31
B(3)-Br	-2.68	-2.54	-2.31

Table 2 ¹¹B-NMR data of B(3) in $[3-X-7-R-7,8-nido-C_2B_9H_{10}]^-$ (X = Br, I; R = H, CH₃, C₆H₅) compounds (I–VI)

Compound	$[3-X-R-7,8-nido-C_2B_9H_{10}]^-$		
	X, R	δ (B(3)–X) (ppm)	Δ (ppm)
$[C_2B_9H_{12}]^-$	–, H	-17.4	0
(I)	I, H	-28.8	-11.4
(II)	Br, H	-14.2	+3.2
(III)	I, Me	-23.1	-5.7
(IV)	I, Ph	-23.6	-6.2
(V)	Br, Me	-11.1	+6.3
(VI)	Br, Ph	-10.9	+6.5

The ${}^{11}B{}^{1}H$ -NMR spectrum of [3-I-7,8-*nido*- $C_2B_9H_{11}$ ⁻ displays a 2:2:2:1:1:1 pattern (low field to high field) in the range -9.3 to -35.8 ppm characteristic of $[7,8-nido-C_2B_9H_{12}]^-$ species, [15] with the resonances sufficiently separated enough to permit their unambiguous assignment by means of ${}^{11}B{}^{1}H{}^{-11}B{}^{1}H{}$ COSY. The peak at -34.1 ppm is easily assigned to B(10) since it appears as a doublet of doublets in the ¹¹B-NMR spectrum due to coupling with the H bridge as well as the exo-H. The peak at -35.8ppm, at highest field, corresponds to B(1), the position antipodal to the open face (Fig. 2). The spectrum also exhibits a singlet at -28.8 ppm corresponding to B(3). With the resonances due to B(1), B(3) and B(10) thus established, analysis of the cross peak easily allowed the assignment of the 2:2:2:1:1:1 pattern to B(9,11): B(5,6): B(2,4): B(3): B(10): B(1), respectively (see Fig. 3).

Fig. 2. Comparison of $^{11}B-$ and $^{11}B\{^{1}H\}-NMR$ spectra of $[HNMe_3][3-I-7,8-nido-C_2B_9H_{11}]$ (I).

Table 3 Selected interatomic distances (Å) and angles (°) for $[HNMe_3][3-I-7,8-nido-C_2B_9H_{11}]$ (I)

Interatomic distances	
I(1) - B(3)	2.163(10)
B(1) - B(4)	1.744(13)
B(1) - B(3)	1.755(14)
B(1) - B(2)	1.772(14)
B(1) - B(6)	1.808(14)
B(1) - B(5)	1.817(14)
B(2) - C(7)	1.729(13)
B(2) - B(6)	1.730(14)
B(2) - B(3)	1.762(15)
B(2) - B(11)	1.776(14)
B(3) - C(8)	1.700(12)
B(3)-C(7)	1.707(13)
B(3) - B(4)	1.787(13)
B(4) - C(8)	1.721(11)
B(4) - B(5)	1.747(14)
B(4) - B(9)	1.792(13)
B(5) - B(10)	1.773(14)
B(5) - B(9)	1.782(14)
B(5) - B(6)	1.823(14)
B(6) - B(11)	1.744(13)
B(6) - B(10)	1.795(14)
C(7) - C(8)	1.555(13)
C(7)-B(11)	1.613(14)
C(8) - B(9)	1.636(14)
B(9) - B(10)	1.857(16)
B(9) - H(10A)	1.37(10)
B(10) - B(11)	1.845(15)
B(10)-H(10A)	1.17(10)
C(21) - N(1)	1.514(12)
C(22) - N(1)	1.481(12)
	1 10 5 (10)
C(23) - N(1)	1.495(12)
C(23) - N(1) N(1)-H(1N)	1.495(12) 0.88(9)
C(25)-N(1) N(1)-H(1N) Interatomic angles	1.495(12) 0.88(9)
$ \begin{array}{l} C(23) - N(1) \\ N(1) - H(1N) \\ Interatomic angles \\ B(4) - B(1) - B(3) \end{array} $	1.495(12) 0.88(9) 61.4(6)
C(23)-N(1) N(1)-H(1N) Interatomic angles B(4)-B(1)-B(3) B(3)-B(1)-B(2)	1.495(12) 0.88(9) 61.4(6) 59.9(6)
C(23)-N(1) N(1)-H(1N) Interatomic angles B(4)-B(1)-B(3) B(3)-B(1)-B(2) B(2)-B(1)-B(6)	1.495(12) 0.88(9) 61.4(6) 59.9(6) 57.8(6)
$\begin{array}{l} C(23) - N(1) \\ N(1) - H(1N) \\ Interatomic angles \\ B(4) - B(1) - B(3) \\ B(3) - B(1) - B(2) \\ B(2) - B(1) - B(2) \\ B(4) - B(1) - B(5) \end{array}$	1.495(12) 0.88(9) 61.4(6) 59.9(6) 57.8(6) 58.7(5)
$\begin{array}{l} C(23) - N(1) \\ N(1) - H(1N) \\ Interatomic angles \\ B(4) - B(1) - B(3) \\ B(3) - B(1) - B(2) \\ B(2) - B(1) - B(2) \\ B(2) - B(1) - B(6) \\ B(4) - B(1) - B(5) \\ B(6) - B(1) - B(5) \end{array}$	$\begin{array}{c} 1.495(12) \\ 0.88(9) \\ \hline \\ 61.4(6) \\ 59.9(6) \\ 57.8(6) \\ 58.7(5) \\ 60.4(6) \end{array}$
C(23)-N(1) $N(1)-H(1N)$ Interatomic angles $B(4)-B(1)-B(3)$ $B(3)-B(1)-B(2)$ $B(2)-B(1)-B(2)$ $B(4)-B(1)-B(5)$ $B(6)-B(1)-B(5)$ $C(7)-B(2)-B(3)$	$\begin{array}{c} 1.495(12) \\ 0.88(9) \\ \\ 61.4(6) \\ 59.9(6) \\ 57.8(6) \\ 58.7(5) \\ 60.4(6) \\ 58.5(5) \end{array}$
C(23)-N(1) $N(1)-H(1N)$ Interatomic angles $B(4)-B(1)-B(3)$ $B(3)-B(1)-B(2)$ $B(2)-B(1)-B(2)$ $B(4)-B(1)-B(5)$ $B(6)-B(1)-B(5)$ $C(7)-B(2)-B(3)$ $B(6)-B(2)-B(1)$	$\begin{array}{c} 1.495(12)\\ 0.88(9)\\ \hline \\ 61.4(6)\\ 59.9(6)\\ 57.8(6)\\ 58.7(5)\\ 60.4(6)\\ 58.5(5)\\ 62.1(6)\\ \end{array}$
C(23)-N(1) $N(1)-H(1N)$ Interatomic angles $B(4)-B(1)-B(3)$ $B(3)-B(1)-B(2)$ $B(2)-B(1)-B(6)$ $B(4)-B(1)-B(5)$ $B(6)-B(1)-B(5)$ $C(7)-B(2)-B(3)$ $B(6)-B(2)-B(1)$ $B(3)-B(2)-B(1)$	$\begin{array}{c} 1.495(12)\\ 0.88(9)\\ \hline\\ 61.4(6)\\ 59.9(6)\\ 57.8(6)\\ 58.7(5)\\ 60.4(6)\\ 58.5(5)\\ 62.1(6)\\ 59.6(6)\\ \end{array}$
C(23)-N(1) $N(1)-H(1N)$ Interatomic angles $B(4)-B(1)-B(3)$ $B(3)-B(1)-B(2)$ $B(2)-B(1)-B(6)$ $B(4)-B(1)-B(5)$ $B(6)-B(1)-B(5)$ $C(7)-B(2)-B(3)$ $B(6)-B(2)-B(1)$ $B(3)-B(2)-B(1)$ $C(7)-B(2)-B(11)$	$\begin{array}{c} 1.495(12)\\ 0.88(9)\\ \hline\\ 61.4(6)\\ 59.9(6)\\ 57.8(6)\\ 58.7(5)\\ 60.4(6)\\ 58.5(5)\\ 62.1(6)\\ 59.6(6)\\ 54.8(5)\\ \end{array}$
C(23)-N(1) $N(1)-H(1N)$ Interatomic angles $B(4)-B(1)-B(3)$ $B(3)-B(1)-B(2)$ $B(2)-B(1)-B(6)$ $B(4)-B(1)-B(5)$ $B(6)-B(1)-B(5)$ $C(7)-B(2)-B(3)$ $B(6)-B(2)-B(1)$ $B(3)-B(2)-B(1)$ $C(7)-B(2)-B(11)$ $B(6)-B(2)-B(11)$	$\begin{array}{c} 1.495(12)\\ 0.88(9)\\ \hline\\ 61.4(6)\\ 59.9(6)\\ 57.8(6)\\ 58.7(5)\\ 60.4(6)\\ 58.5(5)\\ 62.1(6)\\ 59.6(6)\\ 54.8(5)\\ 59.7(6)\\ \end{array}$
C(23)-N(1) $N(1)-H(1N)$ Interatomic angles $B(4)-B(1)-B(3)$ $B(3)-B(1)-B(2)$ $B(2)-B(1)-B(6)$ $B(4)-B(1)-B(5)$ $B(6)-B(1)-B(5)$ $C(7)-B(2)-B(3)$ $B(6)-B(2)-B(1)$ $B(3)-B(2)-B(1)$ $C(7)-B(2)-B(11)$ $B(6)-B(2)-B(11)$ $C(8)-B(3)-C(7)$	$\begin{array}{c} 1.495(12)\\ 0.88(9)\\ \hline\\ 61.4(6)\\ 59.9(6)\\ 57.8(6)\\ 58.7(5)\\ 60.4(6)\\ 58.5(5)\\ 62.1(6)\\ 59.6(6)\\ 54.8(5)\\ 59.7(6)\\ 54.3(5)\\ \end{array}$
C(23)-N(1) $N(1)-H(1N)$ Interatomic angles $B(4)-B(1)-B(3)$ $B(3)-B(1)-B(2)$ $B(2)-B(1)-B(6)$ $B(4)-B(1)-B(5)$ $B(6)-B(1)-B(5)$ $C(7)-B(2)-B(3)$ $B(6)-B(2)-B(1)$ $B(3)-B(2)-B(1)$ $C(7)-B(2)-B(11)$ $B(6)-B(2)-B(11)$ $C(8)-B(3)-C(7)$ $C(7)-B(3)-B(2)$	$\begin{array}{c} 1.495(12)\\ 0.88(9)\\ \hline\\ 61.4(6)\\ 59.9(6)\\ 57.8(6)\\ 58.7(5)\\ 60.4(6)\\ 58.5(5)\\ 62.1(6)\\ 59.6(6)\\ 54.8(5)\\ 59.7(6)\\ 54.3(5)\\ 59.8(6)\\ \end{array}$
C(23)-N(1) $N(1)-H(1N)$ Interatomic angles $B(4)-B(1)-B(3)$ $B(3)-B(1)-B(2)$ $B(2)-B(1)-B(6)$ $B(4)-B(1)-B(5)$ $B(6)-B(1)-B(5)$ $C(7)-B(2)-B(3)$ $B(6)-B(2)-B(1)$ $B(3)-B(2)-B(1)$ $C(7)-B(2)-B(11)$ $B(6)-B(2)-B(11)$ $C(8)-B(3)-C(7)$ $C(7)-B(3)-B(2)$ $B(1)-B(3)-B(2)$	$\begin{array}{c} 1.495(12)\\ 0.88(9)\\ \hline\\ 61.4(6)\\ 59.9(6)\\ 57.8(6)\\ 58.7(5)\\ 60.4(6)\\ 58.5(5)\\ 62.1(6)\\ 59.6(6)\\ 54.8(5)\\ 59.7(6)\\ 54.3(5)\\ 59.8(6)\\ 60.5(6)\\ \end{array}$
C(23)-N(1) $N(1)-H(1N)$ Interatomic angles $B(4)-B(1)-B(3)$ $B(3)-B(1)-B(2)$ $B(2)-B(1)-B(6)$ $B(4)-B(1)-B(5)$ $B(6)-B(1)-B(5)$ $C(7)-B(2)-B(3)$ $B(6)-B(2)-B(1)$ $B(3)-B(2)-B(1)$ $C(7)-B(2)-B(11)$ $B(6)-B(2)-B(11)$ $C(8)-B(3)-C(7)$ $C(7)-B(3)-B(2)$ $B(1)-B(3)-B(2)$ $C(8)-B(3)-B(4)$	$\begin{array}{c} 1.495(12)\\ 0.88(9)\\ \hline\\ 61.4(6)\\ 59.9(6)\\ 57.8(6)\\ 58.7(5)\\ 60.4(6)\\ 58.5(5)\\ 62.1(6)\\ 59.6(6)\\ 54.8(5)\\ 59.7(6)\\ 54.3(5)\\ 59.8(6)\\ 60.5(6)\\ 59.1(5)\\ \end{array}$
C(23)-N(1) $N(1)-H(1N)$ Interatomic angles $B(4)-B(1)-B(3)$ $B(3)-B(1)-B(2)$ $B(2)-B(1)-B(6)$ $B(4)-B(1)-B(5)$ $B(6)-B(1)-B(5)$ $C(7)-B(2)-B(3)$ $B(6)-B(2)-B(1)$ $B(3)-B(2)-B(1)$ $C(7)-B(2)-B(11)$ $B(6)-B(2)-B(11)$ $C(8)-B(3)-C(7)$ $C(7)-B(3)-B(2)$ $B(1)-B(3)-B(2)$ $C(8)-B(3)-B(4)$ $B(1)-B(3)-B(4)$	$\begin{array}{c} 1.495(12)\\ 0.88(9)\\ \hline\\ 61.4(6)\\ 59.9(6)\\ 57.8(6)\\ 58.7(5)\\ 60.4(6)\\ 58.5(5)\\ 62.1(6)\\ 59.6(6)\\ 54.8(5)\\ 59.7(6)\\ 54.3(5)\\ 59.8(6)\\ 60.5(6)\\ 59.1(5)\\ 59.0(5)\\ \end{array}$
C(23)-N(1) N(1)-H(1N) Interatomic angles B(4)-B(1)-B(3) B(3)-B(1)-B(2) B(2)-B(1)-B(6) B(4)-B(1)-B(5) C(7)-B(2)-B(3) B(6)-B(2)-B(1) B(3)-B(2)-B(1) C(7)-B(2)-B(1) B(6)-B(2)-B(1) C(7)-B(2)-B(1) C(7)-B(2)-B(1) C(7)-B(2)-B(1) C(7)-B(3)-B(2) B(1)-B(3)-B(2) C(8)-B(3)-B(4) B(1)-B(3)-B(4) C(8)-B(3)-I(1)	$\begin{array}{c} 1.495(12)\\ 0.88(9)\\ \hline\\ 61.4(6)\\ 59.9(6)\\ 57.8(6)\\ 58.7(5)\\ 60.4(6)\\ 58.5(5)\\ 62.1(6)\\ 59.6(6)\\ 54.8(5)\\ 59.7(6)\\ 54.3(5)\\ 59.8(6)\\ 60.5(6)\\ 59.1(5)\\ 59.0(5)\\ 123.1(6)\\ \end{array}$
C(23)-N(1) $N(1)-H(1N)$ Interatomic angles $B(4)-B(1)-B(3)$ $B(3)-B(1)-B(2)$ $B(2)-B(1)-B(6)$ $B(4)-B(1)-B(5)$ $B(6)-B(1)-B(5)$ $C(7)-B(2)-B(3)$ $B(6)-B(2)-B(1)$ $B(3)-B(2)-B(1)$ $C(7)-B(2)-B(11)$ $B(6)-B(2)-B(11)$ $C(8)-B(3)-C(7)$ $C(7)-B(3)-B(2)$ $B(1)-B(3)-B(2)$ $B(1)-B(3)-B(2)$ $C(8)-B(3)-B(4)$ $B(1)-B(3)-B(4)$ $C(8)-B(3)-I(1)$ $C(7)-B(3)-I(1)$	$\begin{array}{c} 1.495(12)\\ 0.88(9)\\ \hline\\ 61.4(6)\\ 59.9(6)\\ 57.8(6)\\ 58.7(5)\\ 60.4(6)\\ 58.5(5)\\ 62.1(6)\\ 59.6(6)\\ 54.8(5)\\ 59.7(6)\\ 54.3(5)\\ 59.8(6)\\ 60.5(6)\\ 59.1(5)\\ 59.0(5)\\ 123.1(6)\\ 125.6(6)\\ \end{array}$
C(23)-N(1) $N(1)-H(1N)$ Interatomic angles $B(4)-B(1)-B(3)$ $B(3)-B(1)-B(2)$ $B(2)-B(1)-B(6)$ $B(4)-B(1)-B(5)$ $B(6)-B(1)-B(5)$ $C(7)-B(2)-B(3)$ $B(6)-B(2)-B(1)$ $B(3)-B(2)-B(1)$ $C(7)-B(2)-B(11)$ $B(6)-B(2)-B(11)$ $B(6)-B(2)-B(11)$ $C(8)-B(3)-C(7)$ $C(7)-B(3)-B(2)$ $B(1)-B(3)-B(2)$ $B(1)-B(3)-B(2)$ $C(8)-B(3)-B(4)$ $B(1)-B(3)-B(4)$ $C(8)-B(3)-I(1)$ $C(7)-B(3)-I(1)$ $B(1)-B(3)-I(1)$	$\begin{array}{c} 1.495(12)\\ 0.88(9)\\ \hline\\ 61.4(6)\\ 59.9(6)\\ 57.8(6)\\ 58.7(5)\\ 60.4(6)\\ 58.5(5)\\ 62.1(6)\\ 59.6(6)\\ 54.8(5)\\ 59.7(6)\\ 54.3(5)\\ 59.7(6)\\ 54.3(5)\\ 59.8(6)\\ 60.5(6)\\ 59.1(5)\\ 59.0(5)\\ 123.1(6)\\ 125.6(6)\\ 124.9(6)\\ \end{array}$
C(23)-N(1) $N(1)-H(1N)$ Interatomic angles $B(4)-B(1)-B(3)$ $B(3)-B(1)-B(2)$ $B(2)-B(1)-B(6)$ $B(4)-B(1)-B(5)$ $B(6)-B(1)-B(5)$ $C(7)-B(2)-B(3)$ $B(6)-B(2)-B(1)$ $B(3)-B(2)-B(1)$ $C(7)-B(2)-B(11)$ $B(6)-B(2)-B(11)$ $C(8)-B(3)-C(7)$ $C(7)-B(3)-B(2)$ $B(1)-B(3)-B(2)$ $B(1)-B(3)-B(2)$ $C(8)-B(3)-B(4)$ $B(1)-B(3)-B(4)$ $C(8)-B(3)-I(1)$ $C(7)-B(3)-I(1)$ $B(1)-B(3)-I(1)$ $B(2)-B(3)-I(1)$ $B(2)-B(3)-I(1)$ $B(2)-B(3)-I(1)$ $B(2)-B(3)-I(1)$ $B(2)-B(3)-I(1)$ $B(2)-B(3)-I(1)$ $B(2)-B(3)-I(1)$ $B(2)-B(3)-I(1)$ $B(2)-B(3)-I(1)$	$\begin{array}{c} 1.495(12)\\ 0.88(9)\\ \hline\\ 61.4(6)\\ 59.9(6)\\ 57.8(6)\\ 58.7(5)\\ 60.4(6)\\ 58.5(5)\\ 62.1(6)\\ 59.6(6)\\ 54.8(5)\\ 59.7(6)\\ 54.3(5)\\ 59.7(6)\\ 54.3(5)\\ 59.8(6)\\ 60.5(6)\\ 59.1(5)\\ 59.0(5)\\ 123.1(6)\\ 125.6(6)\\ 124.9(6)\\ 123.2(6)\\ \end{array}$
C(23)-N(1) $N(1)-H(1N)$ Interatomic angles $B(4)-B(1)-B(3)$ $B(3)-B(1)-B(2)$ $B(2)-B(1)-B(6)$ $B(4)-B(1)-B(5)$ $B(6)-B(1)-B(5)$ $C(7)-B(2)-B(3)$ $B(6)-B(2)-B(1)$ $B(3)-B(2)-B(1)$ $C(7)-B(2)-B(11)$ $B(6)-B(2)-B(11)$ $C(8)-B(3)-C(7)$ $C(7)-B(3)-B(2)$ $B(1)-B(3)-B(2)$ $B(1)-B(3)-B(2)$ $C(8)-B(3)-B(4)$ $B(1)-B(3)-B(4)$ $C(8)-B(3)-I(1)$ $B(1)-B(3)-I(1)$ $B(4)-B(3)-I(1)$ $B(4)-B(3)-I(1)$ $B(4)-B(3)-I(1)$ $B(4)-B(3)-I(1)$ $B(4)-B(3)-I(1)$ $B(4)-B(3)-I(1)$	$\begin{array}{c} 1.495(12)\\ 0.88(9)\\ \hline\\ 61.4(6)\\ 59.9(6)\\ 57.8(6)\\ 58.7(5)\\ 60.4(6)\\ 58.5(5)\\ 62.1(6)\\ 59.6(6)\\ 54.8(5)\\ 59.7(6)\\ 54.3(5)\\ 59.7(6)\\ 54.3(5)\\ 59.8(6)\\ 60.5(6)\\ 59.1(5)\\ 59.0(5)\\ 123.1(6)\\ 125.6(6)\\ 124.9(6)\\ 123.2(6)\\ 122.1(6)\\ 125$
C(23)-N(1) $N(1)-H(1N)$ Interatomic angles $B(4)-B(1)-B(3)$ $B(3)-B(1)-B(2)$ $B(2)-B(1)-B(6)$ $B(4)-B(1)-B(5)$ $B(6)-B(1)-B(5)$ $C(7)-B(2)-B(3)$ $B(6)-B(2)-B(1)$ $B(3)-B(2)-B(1)$ $C(7)-B(2)-B(11)$ $B(6)-B(2)-B(11)$ $B(6)-B(2)-B(11)$ $C(8)-B(3)-C(7)$ $C(7)-B(3)-B(2)$ $B(1)-B(3)-B(2)$ $B(1)-B(3)-B(2)$ $C(8)-B(3)-B(4)$ $B(1)-B(3)-B(4)$ $C(8)-B(3)-I(1)$ $B(1)-B(3)-I(1)$ $B(1)-B(3)-I(1)$ $B(1)-B(3)-I(1)$ $B(1)-B(3)-I(1)$ $B(1)-B(4)-B(5)$	$\begin{array}{c} 1.495(12)\\ 0.88(9)\\ \hline\\ 61.4(6)\\ 59.9(6)\\ 57.8(6)\\ 58.7(5)\\ 60.4(6)\\ 58.5(5)\\ 62.1(6)\\ 59.6(6)\\ 54.8(5)\\ 59.7(6)\\ 54.3(5)\\ 59.7(6)\\ 54.3(5)\\ 59.8(6)\\ 60.5(6)\\ 59.1(5)\\ 59.0(5)\\ 123.1(6)\\ 125.6(6)\\ 124.9(6)\\ 123.2(6)\\ 122.1(6)\\ 62.7(6)\\ 57.5(6)\\ 59.5$
C(23)-N(1) $N(1)-H(1N)$ Interatomic angles $B(4)-B(1)-B(3)$ $B(3)-B(1)-B(2)$ $B(2)-B(1)-B(6)$ $B(4)-B(1)-B(5)$ $B(6)-B(1)-B(5)$ $C(7)-B(2)-B(3)$ $B(6)-B(2)-B(1)$ $B(3)-B(2)-B(1)$ $C(7)-B(2)-B(11)$ $B(6)-B(2)-B(11)$ $C(8)-B(3)-C(7)$ $C(7)-B(3)-B(2)$ $B(1)-B(3)-B(2)$ $B(1)-B(3)-B(2)$ $C(8)-B(3)-B(4)$ $B(1)-B(3)-B(4)$ $C(8)-B(3)-I(1)$ $B(1)-B(3)-I(1)$ $B(1)-B(3)-I(1)$ $B(1)-B(3)-I(1)$ $B(1)-B(3)-I(1)$ $B(1)-B(3)-I(1)$ $B(1)-B(4)-B(5)$ $C(8)-B(4)-B(3)$ $D(1)-B(4)-B(3)$	$\begin{array}{c} 1.495(12)\\ 0.88(9)\\ \hline\\ 61.4(6)\\ 59.9(6)\\ 57.8(6)\\ 58.7(5)\\ 60.4(6)\\ 58.5(5)\\ 62.1(6)\\ 59.6(6)\\ 54.8(5)\\ 59.7(6)\\ 54.3(5)\\ 59.7(6)\\ 54.3(5)\\ 59.8(6)\\ 60.5(6)\\ 59.1(5)\\ 59.0(5)\\ 123.1(6)\\ 125.6(6)\\ 124.9(6)\\ 123.2(6)\\ 122.1(6)\\ 62.7(6)\\ 57.9(5)\\ 57.9$
C(23)-N(1) $N(1)-H(1N)$ Interatomic angles $B(4)-B(1)-B(3)$ $B(3)-B(1)-B(2)$ $B(2)-B(1)-B(6)$ $B(4)-B(1)-B(5)$ $B(6)-B(1)-B(5)$ $C(7)-B(2)-B(3)$ $B(6)-B(2)-B(1)$ $B(3)-B(2)-B(1)$ $C(7)-B(2)-B(11)$ $B(6)-B(2)-B(11)$ $C(8)-B(3)-C(7)$ $C(7)-B(3)-B(2)$ $B(1)-B(3)-B(2)$ $C(8)-B(3)-B(4)$ $B(1)-B(3)-B(4)$ $C(8)-B(3)-I(1)$ $B(1)-B(3)-I(1)$ $B(1)-B(3)-I(1)$ $B(1)-B(3)-I(1)$ $B(1)-B(4)-B(5)$ $C(8)-B(3)-D(3)$ $B(1)-B(4)-B(3)$ $B(1)-B(4)-B(3)$ $B(1)-B(4)-B(3)$ $B(1)-B(4)-B(3)$	$\begin{array}{c} 1.495(12)\\ 0.88(9)\\ \hline\\ 61.4(6)\\ 59.9(6)\\ 57.8(6)\\ 58.7(5)\\ 60.4(6)\\ 58.5(5)\\ 62.1(6)\\ 59.6(6)\\ 54.8(5)\\ 59.7(6)\\ 54.3(5)\\ 59.7(6)\\ 54.3(5)\\ 59.8(6)\\ 60.5(6)\\ 59.1(5)\\ 59.0(5)\\ 123.1(6)\\ 125.6(6)\\ 124.9(6)\\ 123.2(6)\\ 122.1(6)\\ 62.7(6)\\ 57.9(5)\\ 59.6(5)\\ 55.6(5)\\ 59.6(5)\\ 55.6$
C(23)-N(1) $N(1)-H(1N)$ Interatomic angles $B(4)-B(1)-B(3)$ $B(3)-B(1)-B(2)$ $B(2)-B(1)-B(5)$ $B(4)-B(1)-B(5)$ $C(7)-B(2)-B(3)$ $B(6)-B(2)-B(1)$ $B(3)-B(2)-B(1)$ $B(3)-B(2)-B(1)$ $C(7)-B(2)-B(1)$ $B(6)-B(2)-B(1)$ $C(7)-B(3)-B(2)$ $B(1)-B(3)-B(2)$ $B(1)-B(3)-B(2)$ $C(8)-B(3)-I(1)$ $B(1)-B(3)-I(1)$ $B(1)-B(4)-B(3)$ $C(8)-B(4)-B(3)$ $B(1)-B(4)-B(3)$ $C(8)-B(4)-B(9)$	$\begin{array}{c} 1.495(12)\\ 0.88(9)\\ \hline\\ 61.4(6)\\ 59.9(6)\\ 57.8(6)\\ 58.7(5)\\ 60.4(6)\\ 58.5(5)\\ 62.1(6)\\ 59.6(6)\\ 54.8(5)\\ 59.7(6)\\ 54.3(5)\\ 59.7(6)\\ 54.3(5)\\ 59.8(6)\\ 60.5(6)\\ 59.1(5)\\ 59.0(5)\\ 123.1(6)\\ 125.6(6)\\ 124.9(6)\\ 123.2(6)\\ 122.1(6)\\ 62.7(6)\\ 57.9(5)\\ 59.6(5)\\ 55.5(5)\\ 59.5$
C(23)-N(1) $N(1)-H(1N)$ Interatomic angles $B(4)-B(1)-B(3)$ $B(3)-B(1)-B(2)$ $B(2)-B(1)-B(6)$ $B(4)-B(1)-B(5)$ $C(7)-B(2)-B(3)$ $B(6)-B(2)-B(1)$ $B(3)-B(2)-B(1)$ $B(3)-B(2)-B(1)$ $B(6)-B(2)-B(1)$ $B(6)-B(2)-B(1)$ $C(7)-B(2)-B(1)$ $C(7)-B(3)-B(2)$ $B(1)-B(3)-B(2)$ $B(1)-B(3)-B(4)$ $C(8)-B(3)-I(1)$ $B(1)-B(3)-I(1)$ $B(1)-B(4)-B(3)$ $C(8)-B(4)-B(3)$ $B(1)-B(4)-B(3)$ $C(8)-B(4)-B(9)$ $B(4)-B(5)$ $C(8)-B(4)-B(9)$ $B(4)-B(4)$ $B(4)-B(5)$ $C(8)-B(4)-B(6)$ $B(4)-B(4)$ $B(4)-B(5)$ $C(8)-B(4)-B(6)$ $B(4)-B(5)$ $C(8)-B(4)-B(6)$ $B(4)-B(6)$ $B(4)-B($	$\begin{array}{c} 1.495(12)\\ 0.88(9)\\ \\61.4(6)\\ 59.9(6)\\ 57.8(6)\\ 58.7(5)\\ 60.4(6)\\ 58.5(5)\\ 62.1(6)\\ 59.6(6)\\ 54.8(5)\\ 59.7(6)\\ 54.3(5)\\ 59.7(6)\\ 54.3(5)\\ 59.8(6)\\ 60.5(6)\\ 59.1(5)\\ 59.0(5)\\ 123.1(6)\\ 125.6(6)\\ 124.9(6)\\ 123.2(6)\\ 122.1(6)\\ 62.7(6)\\ 57.9(5)\\ 59.6(5)\\ 55.5(5)\\ 60.5(6)\\ 61.2(6)\\ 61.2(6)\\ 57.9(5)\\ 55.5(5)\\ 60.5(6)\\ 61.2(6)\\ 57.9(5)\\ 55.5(5)\\ 61.2(6)\\ 57.9(5)\\ 55.5(5)\\ 61.2(6)\\ 57.9(5)\\ 55.5(5)\\ 61.2(6)\\ 57.9(5)\\ 55.5(5)\\ 61.2(6)\\ 57.9(5)\\ 55.5(5)\\ 61.2(6)\\ 57.9(5)\\ 55.5(5)\\ 61.2(6)\\ 57.9(5)\\ 55.5(5)\\ 61.2(6)\\ 57.9(5)\\ 55.5(5)\\ 61.2(6)\\ 57.9(5)\\ 55.5(5)\\ 61.2(6)\\ 57.9(5)\\ 55.5(5)\\ 61.2(6)\\ 57.9(5)\\ 55.5(5)\\ 61.2(6)\\ 57.9(5)\\ 55.5(5)\\ 61.2(6)\\ 57.9(5)\\ 55.5(5)\\ 61.2(6)\\ 57.9(5$
C(23)-N(1) $N(1)-H(1N)$ Interatomic angles $B(4)-B(1)-B(3)$ $B(3)-B(1)-B(2)$ $B(2)-B(1)-B(5)$ $B(4)-B(1)-B(5)$ $C(7)-B(2)-B(3)$ $B(6)-B(2)-B(1)$ $B(3)-B(2)-B(1)$ $B(3)-B(2)-B(1)$ $B(6)-B(2)-B(1)$ $B(6)-B(2)-B(1)$ $C(7)-B(2)-B(1)$ $C(7)-B(3)-B(2)$ $B(1)-B(3)-B(2)$ $B(1)-B(3)-B(4)$ $C(8)-B(3)-I(1)$ $B(1)-B(3)-I(1)$ $B(1)-B(3)-I(1)$ $B(1)-B(3)-I(1)$ $B(1)-B(3)-I(1)$ $B(1)-B(3)-I(1)$ $B(1)-B(4)-B(5)$ $C(8)-B(4)-B(3)$ $B(1)-B(4)-B(3)$ $C(8)-B(4)-B(9)$ $B(4)-B(5)-B(9)$ $B(4)-B(5)-B(9)$	$\begin{array}{c} 1.495(12)\\ 0.88(9)\\ \\61.4(6)\\ 59.9(6)\\ 57.8(6)\\ 58.7(5)\\ 60.4(6)\\ 58.5(5)\\ 62.1(6)\\ 59.6(6)\\ 54.8(5)\\ 59.7(6)\\ 54.3(5)\\ 59.7(6)\\ 54.3(5)\\ 59.7(6)\\ 54.3(5)\\ 59.7(6)\\ 60.5(6)\\ 61.2(2,6)\\ 122.1(6)\\ 122.1(6)\\ 122.1(6)\\ 62.7(6)\\ 57.9(5)\\ 55.5(5)\\ 60.5(6)\\ 61.0(6)\\ 61.0(6)\\ 61.0(6)\\ 62.2(6)\\ 62.2(6)\\ 61.0(6$
C(23)-N(1) $N(1)-H(1N)$ Interatomic angles $B(4)-B(1)-B(3)$ $B(3)-B(1)-B(2)$ $B(2)-B(1)-B(5)$ $B(4)-B(1)-B(5)$ $C(7)-B(2)-B(3)$ $B(6)-B(2)-B(1)$ $B(3)-B(2)-B(1)$ $B(3)-B(2)-B(1)$ $B(6)-B(2)-B(1)$ $B(6)-B(2)-B(1)$ $C(7)-B(2)-B(1)$ $B(6)-B(2)-B(1)$ $C(7)-B(3)-B(2)$ $B(1)-B(3)-B(2)$ $C(8)-B(3)-C(7)$ $C(8)-B(3)-B(4)$ $B(1)-B(3)-B(4)$ $C(8)-B(3)-I(1)$ $B(1)-B(3)-I(1)$ $B(1)-B(3)-I(1)$ $B(1)-B(3)-I(1)$ $B(1)-B(4)-B(5)$ $C(8)-B(4)-B(3)$ $B(1)-B(4)-B(3)$ $C(8)-B(4)-B(9)$ $B(4)-B(5)-B(9)$ $B(4)-B(5)-B(9)$ $B(4)-B(5)-B(9)$ $B(4)-B(5)-B(9)$	$\begin{array}{c} 1.495(12)\\ 0.88(9)\\ \\61.4(6)\\ 59.9(6)\\ 57.8(6)\\ 58.7(5)\\ 60.4(6)\\ 58.5(5)\\ 62.1(6)\\ 59.6(6)\\ 54.8(5)\\ 59.7(6)\\ 54.8(5)\\ 59.7(6)\\ 54.3(5)\\ 59.8(6)\\ 60.5(6)\\ 61.5(6)\\ 122.1(6)\\ 122.1(6)\\ 122.1(6)\\ 122.1(6)\\ 62.7(6)\\ 57.9(5)\\ 55.5(5)\\ 60.5(6)\\ 61.0(6)\\ 63.0(6)\\ 63.0(6)\\ 63.0(6)\\ 65.5(5)\\ 60.5(6)\\ 61.0(6)\\ 63.0(6)\\ 65.5(5)\\ 60.5(6)\\ 61.0(6)\\ 63.0(6)\\ 65.5(5)\\ 60.5(6)\\ 61.0(6)\\ 63.0(6)\\ 65.5(5)\\ 60.5(6)\\ 61.0(6)\\ 63.0(6)\\ 65.5(5)\\ 60.5(6)\\ 61.0(6)\\ 63.0(6)\\ 65.5(5)\\ 60.5(6)\\ 61.0(5)\\ 65.5(5)\\ 60.5(6)\\ 61.0(5)\\ 65.5(5)\\ 60.5(6)\\ 61.0(6)\\ 65.5(5)\\ 60.5(6)\\ 61.0(5)\\ 65.5(5)\\ 60.5(6)\\ 61.0(5)\\ 65.5(5)\\ 60.5(6)\\ 61.0(5)\\ 65.5(5)\\ 60.5(6)\\ 61.0(5)\\ 65.5(5)\\ 60.5(6)\\ 61.0(5)\\ 65.5(5)\\ 60.5(6)\\ 61.0(5)\\ 65.5(5)\\ 60.5(6)\\ 61.0(5)\\ 65.5(5)\\ 60.5(6)\\ 61.0(5)\\ 65.5(5)\\ 60.5(6)\\ 61.0(5)\\ 65.5(5)\\ 60.5(6)\\ 61.0(5)\\ 65.5(5)\\ 60.5(6)\\ 61.0(5)\\ 65.5(5)\\ 60.5(6)\\ 61.0(5)\\ 65.5(5)\\ 60.5(6)\\ 61.0(5)\\ 65.5(5)\\ 60.5(6)\\ 61.0(5)\\ 65.5(5)\\ 60.5(6)\\ 61.0(5)\\ 65.5(5)\\ 60.5(6)\\ 61.0(5)\\ 65.5(5)\\ 60.5(5)$

B(10) - B(5) - B(6)	59.9(6)
B(1) - B(5) - B(6)	59.5(6)
B(2)-B(6)-B(11)	61.5(6)
B(11) - B(6) - B(10)	62.8(6)
B(2)-B(6)-B(1)	60.1(6)
B(10) - B(6) - B(5)	58.7(6)
B(1) - B(6) - B(5)	60.1(5)
C(8)-C(7)-B(11)	116.0(8)
C(8) - C(7) - B(3)	62.6(6)
B(11)-C(7)-B(2)	64.1(6)
B(3)-C(7)-B(2)	61.7(6)
C(7) - C(8) - B(9)	111.3(8)
C(7) - C(8) - B(3)	63.1(6)
B(9) - C(8) - B(4)	64.5(6)
B(3)-C(8)-B(4)	63.0(5)
C(8) - B(9) - B(4)	60.1(5)
B(5) - B(9) - B(4)	58.5(5)
C(8) - B(9) - B(10)	106.3(8)
B(5)-B(9)-B(10)	58.3(6)
B(5)-B(10)-B(6)	61.4(6)
B(6)-B(10)-B(11)	57.2(6)
B(5)-B(10)-B(9)	58.7(6)
B(11) - B(10) - B(9)	101.1(7)
C(7)-B(11)-B(2)	61.1(6)
B(6)-B(11)-B(2)	58.9(5)
C(7)-B(11)-B(10)	105.0(7)
B(6)-B(11)-B(10)	59.9(6)
C(22)-N(1)-C(23)	112.1(8)
C(22)-N(1)-C(21)	111.5(8)
C(23)-N(1)-C(21)	111.1(7)
C(22) - N(1) - H(1N)	108(6)
C(23) - N(1) - H(1N)	108(6)
C(21) - N(1) - H(1N)	106(6)

2.3. Description of the structure of $[HNMe_3][3-I-7,8-nido-C_2B_9H_{11}]$ (**I**)

Only three crystal structures of iodinated *nido* compounds, [HNMe₃][9,11-I₂-7,8-*nido*-C₂B₉H₁₀] [6], [HNMe₃][9-I-7,8-*nido*-C₂B₉H₁₁] [6] and Cs[7-(p-C₆H₄NCS)-9-I-7,8-*nido*-C₂B₉H₁₁]. [4] have been reported. That of [HNMe₃][3-I-7,8-*nido*-C₂B₉H₁₁] (I), reported here, is the first in which the iodine is not attached to one of the symmetry equivalent positions 9 or 11.

The salt I crystallise as ion pairs (Fig. 4) with no close inter-ion contacts. The anion has the anticipated *nido* icosahedral geometry with the iodine substituent at position 3. Table 3 lists selected interatomic distances and angles. B(3)–I is 2.163(10) Å, wholly typical of similar distances in the literature [14]. Molecular parameters within the *nido* cage are consistent with those in the parent compound $[7,8-nido-C_2B_9H_{12}]^-$ [15], with C(7)–C(8) 1.555(13) Å. The atom H(10A) appears to be intermediate between *endo* on B10 and bridging between B(10) and B(9), B(9)–H(10A) 1.37(10) Å, B(10)–H(10A) 1.17(10) Å. All other distances and angles, and those in the cation, are quite normal.

Fig. 3. ${}^{11}B{}^{1}H{}^{-11}B{}^{1}H{}$ COSY spectrum of [HNMe₃][3-I-7,8-*nido* - C₂B₉H₁₁] (I).

3. Experimental

3.1. Instrumentation

Elemental analyses were performed using a Carlo Erba EA1108 microanalyser. IR spectra were recorded from KBr pellets on a Shimadzu FTIR-8300 spectrophotometer. ¹H- and ¹H{¹¹B}-NMR (300.13 MHz), ¹³C{¹H}-NMR (75.47 MHz) and ¹¹B-NMR (96.29 MHz) spectra were recorded with a Bruker ARX 300 instrument equipped with the appropriate decoupling accessories. All NMR spectra were recorded from CD₃COCD₃ solutions at 25 °C. Chemical shift values for ¹¹B-NMR spectra were referenced to external BF₃. OEt₂ and those for ¹H-, ¹H{¹¹B}- and ¹³C{¹H}-NMR spectra were referenced to in units of parts per million downfield from reference, and all coupling constants are in Hz. MS

Fig. 4. Perspective view of the ion pair $[HNMe_3][3-I-7,8-nido-C_2B_9H_{11}]$ (I).

spectra were recorded using a Bruker Biflex MALDI-TOF mass spectrometer.

3.2. Materials

Unless otherwise noted, all manipulations were carried out under a dinitrogen atmosphere using standard vacuum line techniques. 3-I-o-carborane, [16] 3-I-1-Meo-carborane, [2] 3-I-1-Ph-o-carborane, [2] 3-Br-o-carborane, [17] 3-Br-1-Me-o-carborane, [2] 3-Br-1-Ph-ocarborane, [2] were synthesised according to the bibliography. Ethanol, KOH and [HNMe₃]Cl were purchased from commercial sources and used as received.

3.3. Trimethylammonium 3-iodo-7,8-dicarba-nidoundecaborate (I)

A solution of 1.95 g (7.2 mmol) of 3-iodo-1,2-dicarbacloso-dodecaborane and 2.0 g (36 mmol) of KOH in 60 ml of ethanol was heated under reflux for 3 h. The alcohol was then distilled off and the residue was dissolved in water (50 ml), neutralised and precipitated with aqueous [HNMe₃]Cl. After filtration, the solid was washed with cold water (2 \times 15 ml) and hexane (2 \times 15 ml) yielding compound I as a white powder. Yield 2.0 g (87%). Anal. Calc. for C₅H₂₁B₉NI: C, 18.81; H, 6.62; N, 4.38. Found: C, 19.53; H, 6.76; N, 4.21%. IR: v $[cm^{-1}] = 3163$ (N–H), 2518 (B–H). ¹H{¹¹B}-NMR: $\delta = 3.22$ (s, 9H, HN(CH₃)₃), 3.00–0.00 (br m, 8H, B– H_{terminal}), 1.95 (br s, 2H, C_{cluster}-H), -2.67 (br m, 1H, B-H_{bridge}).¹³C{¹H}-NMR: $\delta = 48.0$ (C_{cluster}), 45.2 (s, HN(CH₃)₃).¹¹B-NMR: $\delta = -9.3$ (d, ¹*J*(B,H) = 139, 2B, B(9,11), -15.5 (d, ${}^{1}J(B,H) = 136$, 2B, B(5,6)), -19.8 (d, ${}^{1}J(B,H) = 153$, 2B, B(2,4)), -28.8 (s, 1B, B(3)), -34.1 (dd, ${}^{1}J(B,H_{terminal}) = 138$, ${}^{1}J(B,H_{bridge}) = 55$, 1B, B(10), -35.8 (d, ${}^{1}J(B,H) = 154$, 1B, B(1)).

3.4. Trimethylammonium 3-bromo-7,8-dicarba-nidoundecaborate (**II**)

Similarly were reacted 1.60 g (7.2 mmol) of 3-bromo-1,2-dicarba-*closo*-dodecaborane and 2.0 g (36 mmol) of KOH in 60 ml of ethanol. Work-up gave compound **II**. Yield 1.62 g (83%). Anal. Calc. for C₅H₂₁B₉NBr: C, 58.57; H, 4.13; N, 2.73. Found: C, 59.20; H, 4.12; N, 2.70%. IR: ν [cm⁻¹] = 3167 (N–H), 2514 (B–H). ¹H{¹¹B}-NMR: δ = 3.21 (s, 9H, HN(CH₃)₃), 3.0–0.0 (br m, 8H, B–H_{terminal}), 1.95 (br s, 2H, C_{cluster}–H), – 2.68 (br m, 1H, B–H_{bridge}). ¹³C{¹H}-NMR: δ = 47.0 (C_{cluster}), 45.2 (s, HN(CH₃)₃). ¹¹B-NMR: δ = -10.0 (d, ¹*J*(B,H) = 137.6, 2B), -20.7 (s, ¹*J*(B,H) = 152.1, 2B), -36.6 (d, ¹*J*(B,H) = 137.2, 2B).

Table 4 Details of structural study of [HNMe₃][3-I-7,8-*nido*-C₂B₉H₁₁] (I)

Empirical formula	$C_5H_{21}B_9IN$
Formula weight	319.42
Temperature (K)	160(2)
Wavelength (Å)	0.71073
Crystal system	Monoclinic
Space group	$P 2_1/c$
Unit cell dimensions	
a (Å)	11.9951(16)
b (Å)	12.640(3)
c (Å)	9.6449(17)
β(°)	94.070(13)
Volume ($Å^3$)	1458.6(4)
Ζ	4
D_{calc} (Mg m ⁻³)	1.455
Absorption coefficient (mm^{-1})	2.161
F(000)	624
Crystal size (mm ³)	0.06 imes 0.32 imes 0.28
θ range for data collection (°)	2.34-25.00
Index ranges	$-14 \le h \le 14, \ -1 \le k \le 15,$
	$-1 \le l \le 11$
Reflections collected	3306
Independent reflections	2545 $[R_{int} = 0.0709]$
Completeness to $\theta = 25.00^{\circ}$	99.2%
Absorption correction	Empirical
Max/min transmission	1.00, 0.7195
Refinement method	Full-matrix least-squares on F^2
Data/restraints/parameters	2545/10/182
Goodness-of-fit on F^2	1.116
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0544, wR_2 = 0.1324$
R indices (all data)	$R_1 = 0.0853, wR_2 = 0.1536$
Largest difference peak, hole (e $Å^{-3}$)	1.630, -1.688

3.5. Trimethylammonium 3-iodo-7-methyl-7,8-dicarbanido-undecaborate (III)

In the same manner were reacted 2.05 g (7.2 mmol) of 3-iodo-1-methyl-1,2-dicarba-closo-dodecaborane and 2.0 g (36 mmol) of KOH in 60 ml of ethanol. Workup gave compound III. Yield 1.90 g (79%). Anal. Calc. for C₆H₂₃B₉NI: C, 21.61; H, 6.95; N, 4.20. Found: C, 21.71; H, 6.95; N, 4.19%. IR: $v \text{ [cm}^{-1}\text{]} = 3155 \text{ (N-H)},$ 2962–2860 (C_{alk}–H), 2523 (B–H). ${}^{1}H{}^{1}B{}$ -NMR: $\delta =$ 3.21 (s, 9H, HN(CH₃)₃), 3.0-0.0 (br m, 8H, B-H_{terminal}), 1.61 (br s, 2H, C_{cluster}-H), 1.50 (s, 3H, CH₃), -2.54 (br m, 1H, B-H_{bridge}). ¹³C{¹H}-NMR: $\delta = 52.1$ (C_{cluster}), 45.2 (s, HN(CH₃)₃), 25.1 (s, CH₃). ¹¹B-NMR: $\delta = -8.5$ (d, ¹J(B,H) = 153, 1B), -10.3 (d, ${}^{1}J(B,H) = 153, 1B), -16.2 (d, {}^{1}J(B,H) = 173, 2B), -$ 18.4 (d, ${}^{1}J(B,H) = 115$, 1B), -19.1 (d, ${}^{1}J(B,H) = 115$, 1B), -23.1 (s, 1B), -34.1 (d, ${}^{1}J(B,H) = 115, 2B)$.

3.6. Trimethylammonium 3-iodo-7-phenyl-7,8-dicarbanido-undecaborate (**IV**)

Similarly were reacted 2.5 g (7.2 mmol) of 3-iodo-1phenyl-1,2-dicarba-*closo*-dodecaborane and 2.0 g (36 mmol) of KOH in 60 ml of ethanol. After working-up compound **IV** was obtained. Yield 2.0 g (70%). Anal. Calc. for C₁₁H₂₅B₉NI: C, 33.40; H, 6.37; N, 3.54. Found: C, 33.84; H, 6.38; N, 3.55%. **IR**: ν [cm⁻¹] = 3100 (N–H), 2524 (B–H). ¹H{¹¹B}-NMR: δ = 7.20– 6.90 (br m, 5H, C–H_{aryl}), 3.21 (s, 9H, HN(CH₃)₃), 3.0–0.0 (br m, 8H, B–H_{terminal}), 2.40 (br s, 2H, C_{cluster}– H), -2.31 (br s, 1H, B–H_{bridge}). ¹³C{¹H}-NMR: δ = 144.1, 127.5, 126.6, 124.9 (C_{aryl}), 47.1 (C_{cluster}), 45.5 (s, HN(CH₃)₃). ¹¹B-NMR: δ = -6.2 (d, ¹*J*(B,H) = 138, 1B), -9.9 (d, ¹*J*(B,H) = 138, 1B), -15.8 (d, ¹*J*(B,H) = 167, 1B), -17.05 (d, ¹*J*(B,H) = 146, 1B), -19.1 (d, ¹*J*(B,H) = 145, 2 B), -23.6 (s, 1B), -33.3 (d, ¹*J*(B,H) = 143, 2B).

3.7. Trimethylammonium 3-bromo-7-methyl-7,8-dicarbanido-undecaborate (V)

In the same manner were reacted 1.71 g (7.2 mmol) of 3-bromo-1-methyl-1,2-dicarba-*closo*-dodecaborane and 2.0 g (36 mmol) of KOH in 60 ml of ethanol. Work-up gave compound V. Yield 1.55 g (75%). Anal. Calc. for C₆H₂₃B₉NBr: C, 25.16; H, 8.09; N, 4.89. Found: C, 25.26; H, 8.06; N, 4.80%. IR: ν [cm⁻¹] = 3165 (N–H), 2900–2749 (C_{alk}–H), 2524 (B–H). ¹H{¹¹B}-NMR: δ = 3.18 (s, 9H, HN(CH₃)₃), 3.0–0.0 (br m, 8H, B–Hterminal), 1.97 (br s, 2H, C_{cluster}–H), 1.43 (s, 3H, CH₃), -2.54 (br m, 1H, B–H_{bridge}). ¹³C{¹H}-NMR: δ = 52.1 (C_{cluster}), 45.2 (s, HN(CH₃)₃), 25.4 (s, CH₃). ¹¹B-NMR: δ = -8.6 (d, ¹J(B,H) = 135, 1B), -11.1 (d, ¹J(B,H) = 146, 1B), -11.1 (s, 1B), -17.3 (d, ¹J(B,H) = 145, 2B), -18.6 (d, ¹J(B,H) = 151, 1B), -20.2 (d, ¹J(B,H) = 158, 1B), -35.85 (d, ¹J(B,H) = 131, 2B).

3.8. Trimethylammonium 3-bromo-7-phenyl-7,8-dicarbanido-undecaborate (VI)

Similarly were reacted 2.15 g (7.2 mmol) of 3-bromo-1-phenyl-1,2-dicarba-*closo*-dodecaborane and 2.0 g (36 mmol) of KOH in 60 ml of ethanol. After working-up compound VI was obtained. Yield 1.50 g (69%). Anal. Calc. for C₁₁H₂₅B₉NBr: C, 37.9; H,7.2; N, 4.01. Found: C, 38.0; H, 7.3; N, 4.09%. IR: ν [cm⁻¹] = 3165 (N–H), 2527 (B–H). ¹H{¹¹B}-NMR: δ = 7.20–6.90 (br m, 5H, C–H_{aryl}), 3.20 (s, 9H, HN(CH₃)₃), 3.0–0.0 (br m, 8H, B–H_{terminal}), 2.37 (br s, 2H, C_{cluster}–H), -2.31 (br s, 1H, B–H_{bridge}). ¹³C{¹H}-NMR: δ = 143.4, 127.2, 126.8, 124.5 (C_{aryl}), 47.2 (C_{cluster}), 45.3 (s, HN(CH₃)₃). ¹¹B-NMR: δ = -6.6 (d, ¹J(B,H) = 140, 1B), -10.9 (d, 1B), -10.9 (s, 1B), -17.1 (d, ¹J(B,H) = 139, 2B), -19.7 (d, ¹J(B,H) = 183, 1B), -19.9 (d, ¹J(B,H) = 180, 1 B), -35.1 (d, ¹J(B,H) = 135, 2B).

3.9. X-ray crystallographic study of I

A single crystal was mounted on a glass fibre and studied using a Bruker P4 diffractometer [18] operating with graphite-monochromated Mo-K_{α} radiation (λ = 0.71069 Å) with cooling via an Oxford Cryostreams device. Intensity data were collected using ω scans. No significant deviation of the intensities of standard reflections periodically remeasured was detected. Data were corrected for absorption effects by psi scans. The structure was solved by direct methods and difference Fourier methods and refined [19] by full-matrix leastsquares. Cage H atoms and the ammonium H atom were located from a difference Fourier map. Exo-H atoms on the cage were restrained to 1.10(2) Å from boron or 1.15(2) Å from carbon, but the atoms H(10A)and H(1N) were allowed free refinement. Methyl H atoms were set in idealised positions. All H atom displacement parameters were treated as riding on their respective bound atom, with $U_{\rm H}$ set at $1.2 \times U_{\rm B}$, $1.2 \times$ $U_{C_{rank}}$ or $1.5 \times C_{methyl}$. Table 4 lists relevant data.

4. Supporting information available

Crystallographic data (excluding structure factors) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publications CCDC no. 169772. Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgements

G.B. thanks CSIC and Carburos Metálicos for a grant. This work was supported by project MAT98-0921.

References

- [1] (a) H. Lee, C.B. Knobler, M.F. Hawthorne, Chem. Commun. 24 (2000) 2485;
 (b) LL Marrie K.W. Hardensen, V.A. Ol'chambarre, L. Chem.
 - (b) J.H. Morris, K.W. Henderson, V.A. Ol'shevskaya, J. Chem. Soc. Dalton Trans. (1998) 1951;

(c) C.-W. Tsang, Q. Yang, E. Tung-Po Sze, T.C.W. Mak, D.T.W. Chan, Z. Xie, Inorg. Chem. 39 (2000) 3582;

- (d) W. Keller, G. Sawitzki, W. Haubold, Inorg. Chem. 39 (2000) 1282.
- [2] C. Viñas, G. Barberà, J.M. Oliva, F. Teixidor, A.J. Welch, G.M. Rosair, Inorg. Chem. 40 (2001) 6555.
- [3] C. Viñas, G. Barbera, F. Teixidor, J. Organomet. Chem. 642 (2002) 16.
- [4] E.A. Mizusawa, M.R. Thompson, M.F. Hawthorne, Inorg. Chem. 24 (1985) 1911.
- [5] F.P. Olsen, M.F. Hawthorne, Inorg. Chem. 4 (1965) 1839.
- [6] R.H. Pak, R.R. Kane, C.B. Knobler, M.F. Hawthorne, Inorg. Chem. 33 (1994) 5355.
- [7] G.K. Semin, L.I. Zakharkin, S.I. Kuznetsov, G.G. Zhigareva, E.V. Bryukhova, Russ. J. Gen. Chem. 68 (1998) 919.
- [8] E.C. Santos, A.B. Pinkerton, S.A. Kinkead, P.K. Hurlburt, S.A. Jasper, C.W. Sellers, J.C. Huffman, L.J. Todd, Polyhedron 19 (2000) 1777.
- [9] M.A. Fox, K. Wade, J. Organomet. Chem. 573 (1999) 279.
- [10] M.F. Hawthorne, A. Maderna, Chem. Rev. 99 (1999) 3421.
- [11] M.F. Hawthorne, P.A. Wegner, J. Am. Chem. Soc. 90 (1968) 896.
- [12] W. Chen, J.J. Rockwell, C.B. Knobler, D.E. Harwell, M.F. Hawthorne, Polyhedron 18 (1999) 1725.
- [13] (a) L.I. Zakharkin, V.A. Ol'shevskaya, D.D. Sulaymankulova, V.A. Antonovich, Bull. Acad. Sci. USSR Div. Chem. Sci. (1991) 1026;
 (b) L.I. Zakharkin, V.A. Ol'shevskaya, D.D. Sulaymankulova,

Russ. Chem. Bull. 42 (1993) 1395; (c) V.A. Brattsev, S.P. Knyazev, G.N. Danilova, T.N. Vostrikova, V.I. Stanko, J. Gen. Chem. USSR 46 (1976) 2627.

- [14] Z. Zheng, W. Jiang, A.A. Zinn, C.B. Knobler, M.F. Hawthorne, Inorg. Chem. 34 (1995) 2095 (and references therein).
- [15] J. Buchanan, E.J.M. Hamilton, D. Reed, A.J. Welch, J. Chem. Soc. Dalton Trans. (1990) 677.
- [16] J. Li, C.F. Logan, M. Jones, Jr., Inorg. Chem. 30 (1991) 4866.
- [17] J. Li, M. Jones, Jr., Inorg. Chem. 29 (1990) 4162.
- [18] Siemens Analytical Instruments, Inc., Madison, WI, USA 1996.
- [19] G.M. Sheldrick, SHELXTL Version 5.1. Bruker AXS Inc., Madison, WI, USA, 1999.